cibyl

unknown

Sep 14, 2022

1.1 Bootstrap
1.2 Usageo vl
1.3 Inmstallation

1 Index
1.4 Configuration

1.5 CLI.........,
1.6 APL
17 Parser,
1.8 Plugins
1.9 Sources,
.10 Output it
1.11 Jenkins
1.12 Zuwul API
1.13 Jenkins Job Builder

1.14 Elasticsearch

1.15 Zuul Definitions

1.16 Core Models
1.17 Plugin Models

1.18 OpenStack Plugin
1.19 Features.
1.20 Tests o v i it
1.21 Sources
1.22 Features.
1.23 Output
1.24 Contribute

2 Indices and tables

QUICKSTART

............................ 28

cibyl

Cibyl is a command-line interface and REST API for querying CI environments and systems.
It supports out-of-the-box the following CI systems:

* Jenkins

e Zuul

Cibyl allows you to configure multiple environments, where each environment contains one or more CI/CD system and
each CI/CD system can be queried using different types of source

/ Environment \
/[System] / System \ . o

- An environment with two Jenkins systems.:

~ |Source| h

e S
Jenkins API

Jenkins

-——
_ Sasicsearcn / _

The Jenkins system on the left side
: supports two sources: Jenkins APl and
. Elasticsearch.

The Jenkins system on the right side :
Jenkins : supports only its Jenkins APl as a source

Jenkins APl

o

/ Environment
] ~ R —

A

e) ™ _:
M . Another, separate, environment with one
% © Zuul system. !
\ J The Zuul system supports two sources:
Zuul API + Zuul API and Zuul definitions (git

. repositories).

_ _ ‘@’/)

The project originated from Red Hat OpenStack DevOps team that looked for a solution to provide a powerful and
flexible way for inspecting multiple different CI environments and systems, with regards to product aspects.

The name Cibyl, a form of Sybil, derived from the Greek sybilla or sibilla. Like a prophetess, Cibyl delves into the
depths of CI systems for “hidden” info revelation. CI-byl is also a wordplay that reflects the relation to CIL.

QUICKSTART 1

cibyl

2 QUICKSTART

CHAPTER
ONE

INDEX

1.1 Bootstrap

1.1.1 Installation

Install cibyl from GitHub (Recommended):

pip install 'git+https://github.com/rhos-infra/cibyl.git’

1.1.2 Configuration

In order to use Cibyl’s CLI, you should set up configuration first in ~/.config/cibyl.yaml.

Configuration is structured as follows

Minimal configuration

environments:
production:
production_jenkins:
system_type: jenkins
sources:
jenkins_api:
—jenkins" system
driver: jenkins
url: https://...
username: user
token: xyz
cert: False

List of CI/CD environments

An environment called "production"

A single system called "production_jenkins"

The type of the system (jenkins or zuul)

List of sources belong to "production_jenkins" system
The name of the source which belongs to "production_

oW R R R W

The driver the source will be using

The URL of the system

The username to use for the authentication

The token to use for the authentication

Disable/Enable certificates to use for the authentication

HoH R R W

plugins: # (Optional) Specify the plugins to enable when running.,
—Cibyl

- openstack # OpenStack adds its own product related models and.
—arguments
Note:

Red Hat OpenStack user? use the following command to set up the configuration:
wget https://url.corp.redhat.com/cibyl-config -O ~/.config/cibyl.yaml

https://url.corp.redhat.com/cibyl-config

cibyl

For more information on how to set up the configuration, read the configuration section.

1.1.3 Usage - CLI

Once you’ve installed Cibyl and set up the configuration, you can start running cibyl commands
cibyl query --jobs will print all the jobs from each specified system in the configuration
To get an idea of what type of commands you can use with Cibyl, run cibyl -h

To get an idea of what type of information you query for with Cibyl, run cibyl query -h

For a more in depth guide on how to use Cibyl, read the CLI usage section.

1.2 Usage

1.2.1 CLI

Basic

Running cibyl with no arguments, will print the environments and systems as set up in your configuration. Cibyl
supports multiple subcommands. The most common one is query, that allows to query many environments for different
CI/CD and product specific data. Another example is the features subcommand, which allows to query whether
certain product-specific features are supported in each of the environments of the configuration (see features section
for more details).

Jobs
Running cibyl query --jobs will retrieve information on all the jobs for each environment specified in your con-
figuration.

In order to retrieve jobs for a specific environment, use the --envs Environment argument. If the environment
includes multiple systems, you can also choose a specific system with the --systems System argument. The same
can be done for sources with the --sources Source argument.

This was a simple example of what you could do with cibyl, to get a more depth overview see the CLI usage section.

1.2.2 Python

To Do

4 Chapter 1. Index

configuration.html#configuration
usage/cli.html
features.html
usage/cli.html

cibyl

1.3 Installation

Install cibyl from GitHub (Recommended):

pip install 'git+https://github.com/rhos-infra/cibyl.git’

To obtain latest stable released version of Cibyl, install it from PyPi:

pip install cibyl

Warning: Using Cibyl from virtualenv might not work as expected if certifications are required to connect the CI
system(s)

Note: For development purposes, it’'s recommended to use pip install -e 'git+https://github.com/
rhos-infra/cibyl.git’

1.3.1 Configuration

In order to use Cibyl’s CLI, you should set up configuration first. Configuration is structured as follows:

environments:
example_env:
example_system:
system_type: jenkins
sources:
osp_jenkins:
driver: jenkins
url: 'https://some.jenkins.com'
cert: False
username: example_username # Required specifically by Jenkins
token: example_token # Required specifically by Jenkins

Default location for the configuration file is ~/.config/cibyl.yaml

Each type of system will require a different set of parameters in order to start using/querying it. For more information
on how to set up configuration for CLI usage, read the configuration section.

1.4 Configuration

Cibyl CLI is fully visible and usable only once you’ve setup the configuration file. This is because the CLI is dynamically
changing based on the type of CI systems you have defined in the configuration file.

1.3. Installation 5

configuration.html#configuration

cibyl

1.4.1 Format

The configuration file is written in YAML and is divided in two sections: environments and plugins. See below for an
example of a minimal configuration that shows both sections.

Minimal configuration

environments:
production:
production_jenkins:
system_type: jenkins
sources:
jenkins_api:
—jenkins" system

List of CI/CD environments

An environment called "production"

A single system called "production_jenkins"

The type of the system (jenkins or zuul)

List of sources belong to "production_jenkins" system
The name of the source which belongs to "production_

W R R KR

driver: jenkins # The driver the source will be using

url: https://... # The URL of the system

username: user # The username to use for the authentication

token: xyz # The token to use for the authentication

cert: False # Disable/Enable certificates to use for the authentication
plugins: # (Optional) Specify the plugins to enable when running.,
—Cibyl

- openstack # OpenStack adds its own product related models and.

—arguments

The environments contains a list of environments. Each environment might contain one or more systems, which in
turn might contain one or more sources. More details about this hierarchy can be found in the Core Models section.
In short, an environment models a group of CI systems that are setup for a common purpose. At the same time, each
CI system can have multiple sources of information available. See the Full Configuration section for an example of a
configuration file with multiple environments, systems and sources.

The plugins section contains a list of plugins that should be loaded to provide cibyl with product-specific functionality.

1.4.2 Configuration Path

By default cibyl will look for the configuration file in the following paths:
e ~/.config/cibyl.yaml
e /etc/cibyl/cibyl.yaml

A different path can be used if the argument --conf path is used. Additionally, the --conf argument also supports
passing a URL to configuration file. If a URL is passed, it will be downloaded to ~/.config/cibyl.yaml.

1.4.3 Sources

Cibyl supports multiple different types of sources. Each source may require some specific configuration. Below we
link a page for each source implemented in cibyl. This pages contain a brief description of the source, a configuration
sample and which plugins support it.

e Jenkins
e Zuul API

¢ Elasticsearch

6 Chapter 1. Index

models/core.html#core-models
sources/jenkins.html
sources/zuul_api.html
sources/elasticsearch.html

cibyl

¢ Zuul Definitions

¢ Jenkins Job Builder

1.4.4 Validate Configuration

The best way to validate the configuration you’ve added is correct, is to run the cibyl command. This should list
the environments and systems specified in the configuration file. If the configuration is correct, then cibyl will print
the environments and systems defined in the configuration. Taking the minimal configuration defined in the Format
section, running cibyl will print:

Environment: production
System: production_jenkins

If there is some problem with the configuration file, cibyl will raise one of the following errors:

* ConfigurationNotFound: There is no configuration file in any of the default paths or the path specified by the
user.

* EmptyConfiguration: A configuration file was found, but it’s empty.

* MissingEnvrionments: The configuration file does not include any environments

* MissingSystems: An environment in the configuration file does not include any systems
* MissingSystemKey: A system in the configuration is missing a required key

* MissingSystemType: The type of one system in the configuration was not specified

* NonSupportedSystemKey: A key in the configuration of one system is not supported (e.g. a parameter was
added to the wrong system)

* MissingSystemSources: A system in the configuration has no sources

* NonSupportedSourceKey: A key in the configuration of one source is not supported (e.g. a parameter was
added to the wrong source)

* NonSuppportedSourceType: A source type in the configuration is not supported
* MissingSourceKey: The configuration of one source is incomplete and missing a required key

* MissingSourceType: The type of a source in the configuration is not specified

1.4.5 Full Configuration

As mentioned before, the configuration file might contain many environments, systems and sources. In the example
below, a configuration consisting of two environments is shown. The first environment production, contains three sys-
tems: production_jenkins_1, production_jenkins_2 and production_zuul. The production_jenkins_I system contains
two sources, a Jenkins source called jenkinsI_api and a Jenkins Job Builder source called job_definitions. The produc-
tion_jenkins_2 and production_zuul systems contain one source each, a Jenkins and Zuul source, respectively. Finally,
the staging environment contains a system staging_jenkins with a single Jenkins source.

Full Configuration Example
environments: # List of CI/CD environments

production: # An environment called "production"

(continues on next page)

1.4. Configuration 7

sources/zuul.d.html
sources/jenkins-job-builder.html

cibyl

(continued from previous page)

production_jenkins_1:
— "production" environment
system_type: jenkins
sources:

jenkinsl_api:
—jenkins_1" system
driver: jenkins
url: https://...
username: user
token: xyz
cert: False

job_definitions:
— "production_jenkins_1"

H%

H R R R W

#

A single system called "production_jenkins_1" belongs to

The type of the system (jenkins or zuul)
List of sources belong to "production_jenkins" system

The name of the source which belongs to "production_

The driver the source will be using

The URL of the system

The username to use for the authentication

The token to use for the authentication

Disable/Enable certificates to use for the authentication

Another source that belongs to the same system called

driver: jenkins_job_builder

repos:

- url: https://job_definitions_repo.git

production_jenkins_2:
system_type: jenkins
sources:

jenkins2_api:
driver: jenkins
url: https://...
username: user
token: xyz
cert: False

production_zuul:
system_type: zuul
sources:

zuul_api:
driver: zuul
url: https://...

staging:
staging_jenkins:

system_type: jenkins
sources:

staging_jenkins_api:

driver: jenkins
url: https://...
username: user
token: xyz

Another system belongs to the "production" environment

Another environment called "staging"

Chapter 1. Index

cibyl

1.4.6 Disabling environments, systems and sources

It’s possible to disable each type of entity in Cibyl with the directive enabled: false. For example, the following
will disable the environment staging’ and the system production-2

environments:
production:
production_jenkins_1:
system_type: jenkins
sources:
jenkins_api_prod:
driver: jenkins
url: https://...
username: user
token: xyz
production_jenkins_2:

enabled: false # Makes 'production_jenkins_2' system disabled
system_type: jenkins
sources:

jenkins_api_prod:
driver: jenkins
url: https://...
username: user
token: xyz
staging:
enabled: false # Makes 'staging' environment disabled
staging_jenkins:
system_type: jenkins
sources:
jenkins_api_staging:
driver: jenkins
url: https://...
username: user
token: xyz

Note: you can’t use a disabled environment, even if specifying it directly with one of the following arguments: —envs,
—systems and —sources.

1.5 CLI

Cibyl can be used as as a CLI tool to query CI related information from multiple CI systems. Cibyl can provide
information from two domains: CI/CD data and product-specific data. The first corresponds to concepts that are
pertinent to many CI systems, like builds, jobs, tests or system-specific concepts like pipelines and tenants in Zuul
systems (for more details on CI concepts supported by cibyl check the core models section).

Product-specific information is provided by plugins (see the openstack plugin as an example). As the name indicates,
these are properties that are not related to the CI system but to the product being tested. In the case of openstack, some
examples include the topology of the deployment, or the openstack version being deployed.

Due to this dual source of information, cibyl can be used to query both kinds of properties, as well as combine them in
more complex queries. This page will provide several examples of queries that can be done with cibyl.

1.5. CLI 9

../models/core.html
../plugins/openstack.html

cibyl

CLI arguments that accept values follow the assumption that if they are passed without any value, the user is requesting
to list the corresponding information, while if passed with a value, the value will be used as a filter. As an example,
running cibyl query --jobs will list all available jobs, while cibyl query --jobs abc will list the jobs that
have the string abc in their names.

Note: Throughout this page we assume for simplicity that there is only one CI system defined in the user configuration.
Nevertheless, every command shown here can be run with a configuration composed of multiple environments, systems
and sources. Check the configuration section for more details on how to construct the configuration for such cases.

Note: In cibyl, all cli arguments that accept a value, like —jobs or —tests will consider the input as a regular expression.
The regex are matched using the syntax defined in the re module (docs).

1.5.1 CLI organization

Cibyl supports the following subcommands:
* query
* features
* spec

This page will cover many uses of the query subcommand, for examples of the features one see the features section
and for examples of the spec subcommand see the spec section.

1.5.2 General parameters

Before listing interesting use-cases, cibyl has also a set of application-wide cli arguments that will affect the queries.
This arguments must be specified before the subcommand. For example, to run a command to list of all jobs with a
verbose output and a configuration file outside the default path, you should run:

cibyl -v --config path/to/config.yml query --jobs

The application-level arguments supported by cibyl are:

-d, --debug
Turn on debug-level logging

-v, --verbose
Verbosity level. This flag is additive, -vv will print more output than -v. In verbose mode, additional fields for
the output are printed, such as the url for jobs, or the duration for builds.

-c, --config
Path to the configuration file, this can be a local path, or a url. If it’s a url, the file will be downloaded and stored
in your local machine.

--log-mode=[terminal | file|both]
Where to write the logging output. Options are terminal, file or both, default is both.

--log-file
Path to store the logging output if the file or both option for --1og-mode is selected, default is cibyl_output.log.
--output-format=[text|colorized|json]

Sets the output format. Both text and colorized print to standard output, but the colorized uses color for better
visuals. Json support is not complete.

10 Chapter 1. Index

../configuration.html
https://docs.python.org/3/library/re.html
../features.html
../plugins/openstack.html#spec

cibyl

-0, --output
Write output to the file passed as value.

-p, --plugin
Plugins to use in the queries.

1.5.3 CI/CD queries

Environment selection

The user configuration might consist of many environments, systems and sources. However, for any particular query
the user might want to only use a subset of the defined environments. There are four arguments that can be used to
achive this:

--envs
Environments to use in the query, filtering by name

--systems
Systems to use in the query, filtering by name

--system-type
Systems to use in the query, filtering by type

--sources
Sources to use in the query, filtering by name

The arguments presented in this section can be combined with any of the commands shown anywhere in this page.

Job queries

Cibyl can be used to query the list of all jobs defined in a CI system:

cibyl query --jobs

or to list the jobs that contain the string /23:

cibyl query --jobs 123

or to list the jobs that end with the string /23:

cibyl query --jobs "123§%"

Build queries

Cibyl can be used to query the list of all builds for all jobs defined in a CI system:

cibyl query --jobs --builds

or the last build for all jobs:

cibyl query --jobs --last-build

or the last build for all jobs where that build failed:

1.5. CLI 11

cibyl

cibyl query --jobs --last-build --build-status FAILED

Note: The value for the —build-status argument in case insensitive, so both FAILED and failed would produce the
same result

or the last build for all jobs that have the string /23 in the name and where that build failed:

cibyl query --jobs 123 --last-build --build-status FAILED

Test queries

Cibyl can be used to query the list of all tests for all jobs defined in a CI system. To query for tests, the user must specify
a build where the tests were run, either through the —last-build or —builds arguments:

cibyl query --jobs --last-build --tests

listing the tests that run in build number 5:

cibyl query --jobs --builds 5 --tests

or list the tests that contain the string /23 in their name:

cibyl query --jobs --last-build --tests 123

or list only the failing tests:

cibyl query --jobs --last-build --test-result FAILED

or list only the tests that run for more than 5 minutes, but less than 10 minutes (test duration is specified in seconds):

cibyl query --jobs --last-build --test-duration ">300" "<600"

Note: The —test-duration is a ranged argument. In cibyl, ranged arguments take multiple values in the form “OPERA-
TOR VALUE”, without the space in between. Common operators like “<”, “>”, “1=", “=="“<="“>=" are supported.
Additionally using a single equal sign “=" is also a valid equality operator, and if no operator is specified, the equality

one is used by deafault.

Zuul specific queries

In cibyl, there are some argumetns that are only supported when running queries against a Zuul system, and will be
ignored otherwise. For example, we can list all jobs in the default tenant:

cibyl query --tenants default --jobs

or list all jobs related to project example-project in all tenants:

cibyl query --projects example-project --jobs

or list all jobs under the check pipeline:

12 Chapter 1. Index

cibyl

ciby query --pipelines check --jobs

The arguments shown in previous sections can be combined with the Zuul specific ones. For example, we could use
cibyl to list the last build of the jobs that have the string /23 in their name, belong to a project named example, to a
check pipeline and under the default tenant, but only if the build was successful:

cibyl query --tenants default --project example --pipeline check --jobs 123
--last-build --build-statu SUCCESS

Jenkins specific queries

As is the case with Zuul systems, Jenkins systems have some specific arguments that can combined with the more
general ones. Cibyl can query Jenkins systems to list the stages that were run in a build. For example the following
command would show the stages run for the last build of the job called job_name:

cibyl query --jobs job_name --last-build --stages

1.5.4 Product queries

Openstack queries

As part of the functionality provided by the openstack plugin, cibyl can query the CI systems for openstack related
information. For example it’s quite simple to list the version of the ip protocol used in each job:

cibyl query --ip-version

or listing the jobs that use ipv6 protocol:

cibyl query --ip-version 6

Similarly, other openstack properties can be used for queries, and can be combined for more complex queries. Building
on the previous example, let’s build a cibyl command to show the network backend used in every job that also used
ipv6:

cibyl query --ip-version 6 --network-backend

Other examples of relevant openstack arguments include checking which jobs setup the tests from git, instead of rpm
packages:

cibyl query --test-setup git

or filtering by the number of compute and controller nodes used in a deployment. This can be done via the
--controllers and --computes arguments, which are ranged arguments (see note above for more deatils on what
that means). Let’s see an example of how to query for those jobs that use at least 2 compute nodes and more than 3
controller nodes, but no more than 6 controllers:

cibyl query --controllers ">3 <=6" --computes ">=2"

The list shown here is not a comprehensive collection of all the arguments defined in the openstack plugin, check the
plugin page in the documentation for the full list.

1.5. CLI 13

../plugins/openstack.html

cibyl

Combination of openstack and CI/CD queries

In a cibyl query, CI/CD and openstack arguments can be combined to form more complex queries. This section will
show some examples of such calls. The following call will list all jobs that contain the string example, deploy openstack
using ceph as the cinder backend and geneve as the network backend, and also print the last build for each job:

cibyl query --jobs example --cinder-backend ceph --network-backend geneve
--last-build

the previous example could be expanded to only list those jobs that had a passing last build:

cibyl query --jobs example --cinder-backend ceph --network-backend geneve
--last-build --build-status SUCCESS

1.6 API

1.7 Parser

Cibyl provides two sources of user input, the configuration file and the command line arguments. The configuration
file details the ci environment that the user wants to query, while the command line arguments tell Cibyl what the user
wants to query.

Cibyl’s cli is divided in several subcommands. The parser is the component responsible for bringing all the subcom-
mands together and ensuring the corresponding arguments are added. In the case of the features subcommands that
is simple, since it only has one argument. The case of the query sucommand is different, since the cli arguments are
extended dynamically depending on the contents of the configuration.

Note: The rest of this page is relevant only for the query subcommand.

When running cibyl query -h only the arguments that are relevant to the user, according to its configuration, will
be shown. If there is no configuration file, Cibyl will just print a few general arguments when calling cibyl query
-h. If the configuration is populated then arguments will be added depending on its contents.

The parser is extended using a hierarchy of CI models. This hierarchy is Cibyl’s internal representation of the CI
environments. The models are created after reading the configuration and the hierarchy is implicitely defined in the
API attribute of said models. For example, one environment might include a Jenkins instance as CI system, and have
it also as source for information, in addition to an ElasticSearch instance as a second source. With this environment, if
the user runs cibyl query -h, it will show arguments that are relevant to a Jenkins system, like --jobs, --builds
or --build-status. In such a case it will not show arguments like --pipelines which would be useful if the CI
system was a Zuul instance.

The API of a CI model is a dictionary with the following structure (extracted from the System API):

APT = {

'name': {
'attr_type': str,
"arguments': []

I

'sources': {
'attr_type': Source,
'attribute_value_class': AttributelListValue,

(continues on next page)

14 Chapter 1. Index

cibyl

(continued from previous page)

"arguments': [Argument(name='--sources', arg_type=str,
nargs="*",
description="Source name")]
1
"jobs': {'attr_type': Job,
'attribute_value_class': AttributeDictValue,
"arguments': [Argument(name='--jobs', arg_type=str,
nargs=""",
description="System jobs",
func="get_jobs')]}

each key corresponds to the name of an attribute, and the value is another dictionary with attribute-related information.
At this point we need to distinguish between arguments and attributes. In Cibyl an Argument is the object that is ob-
tained from parsing the user input. The values passed to each option like --debug or --jobs are stored in an Argument.
Attributes correspond to the actual key-value pairs in the API. An attribute has an attribute_value_class which by
default is AttributeValue, but can also be AttributeDictValue and AttributelListValue. The difference be-
tween the three is the how they store the arguments. The first is intended to hold a single option (things like name, type,
etc.). While the other two hold a collection of values either in a dictionary or a list (hence the name). The information
provided by the user is accessible throgh the value field of any Attribute class.

Each API element has also an attr_type, which describes what kind of object will it hold. In the example above name
will hold a string, while jobs will hold a dictonary of Job objects. This allows us to establish the hierarchy mentioned
previously, by checking if the attr_type field is not a builtin type. Finally, there is an arguments field, which associates
the actual options that will be shown in the cli with an attribute. An attribute may have no arguments, one argument or
multiple arguments associated with it.

Argument objects have a set of options to configure the behavior of the cli. The name determines the option that will
be shown, arg_type specifies the type used to store the user input (str, int, etc.), nargs and description have the same
meaning as they do in the arparse module. The level argument, measures how deep in the hierarchy a given model is.
Finally, we see the func argument, which points to the method a source must implement in order to provide information
about a certain model. In the example shown here, only jobs has an argument with func defined, as it is the only CI
model present. If the user runs a query like:

cibyl query --jobs

then Cibyl will look at the sources defined and check whether any has a method get_jobs, and if it finds one it will
use it to get all the jobs available in that source.

Arguments are added to the application parser in the extend_parser method of the Orchestrator class. This method
loops through the API of a model (in the first call it will be an Environment model) and adds its arguments. If any of
the API elements is a CI model, the element’s API is recursively used to augment the parser. As the extend_parser
method iterates through the model hierarchy, it creates a graph of the relationships between query methods (the sources’
methods that are added to the arguments’ func attribute). The edges of the graph are created when a new recursive call
is made. As an example, when exploring the API for the Job model, we know that the arguments will call get_jobs,
so when a new call is made for the Build API, a new edge wil be created from get_jobs to all the new query methods
that are found, in this case it will be get_builds.

For each recursive call, the level is increased. The level parameter is key to identify the source of information for the
query that the user sends. In the Jenkins environment example mentioned before, we may have a hierarchy like:

Environment => System => Job => Build

where each at each step we increase the level by 1. We can then parse the cli arguments and sort by decreasing level. To
select which query method should be called, cibyl relies on the graph constructed during the call to extend_parser. It

1.7. Parser 15

cibyl

iterates over the sorted list of arguments and for each of them constructs a path to the root of the graph. The intermediate
nodes in this path are removed from the list of arguments to query, since by the hierarchical nature of the relationship
between the models, calling an argument’s func makes the call to the argument’s parent func redundant.

In the example above, Build is the model with the largest level. If we assume that user has made a call like cibyl
--jobs --builds, we want to query the sources for builds, but we known that each build will be associated with a
job, and each job will be associated with a system, etc. We also know that after calling get_builds, we will not need
to call get_jobs. Thus we get a sorted list of arguments, which is [builds, jobs]. We create a path from builds to the
root of the graph, which in the case of a Jenkins systems is jobs (for a zuul system this would be more complex). After
iterating over the path, we remove jobs from the list of arguments to query, since builds already will provide the jobs
information.

1.8 Plugins

Plugins allow you to extend built-in models with your own models. This can be useful in case you would like to
associate product related data with your CI models for example, as can be seen in the image below. In this case, the
Job model is being associated with the Deployment model through the deployment key in Job’s API.

/ _ Built-In Cibyl models

I‘l f
Environment I
System I

| Class/Model

| API

_/’ Example of plugin models >

Deployment I
— I
Node

Container |

A supported plugin in Cibyl has to adhere following structure:

cibyl
plugins
L example # Arbitrary plugin name
L— __init__.py # Should include Plugin class with _extend method

16 Chapter 1. Index

cibyl

1.8.1 Plugin Class

class ExamplePlugin:

def _extend(self, model_api: dict):
model_api['new_attribute'] = {
'attr_type': str,
arguments: []

1.9 Sources

Sources in Cibyl are responsible for performing the queries and getting the data the user is interested in. A source can
be anything: a CI system, repository, database, etc. Cibyl supports the following sources out-of-the-box:

¢ Jenkins

 Jenkins Job Builder
e Zuul

¢ Elasticsearch

e Zuul Job Definitions

1.9.1 Configuring Sources

The following is an example of Jenkins source configuration:

environments:
example_environment:
jenkins_system:
system_type: jenkins
sources:
jenkins_source:
driver: jenkins
username: some_username
token: some_token
url: https://jenkins.example.com

See configuration to understand how to properly configure Cibyl for CLI usage.

1.9.2 Source Interface

Each source can support one or more of the arguments specified by the different models of Cibyl. The only constraint
regarding sources is that each source must inherit from the Source class.

1.9. Sources 17

sources/jenkins.html
sources/jenkins-job-builder.html
sources/zuul.html
sources/elasticsearch.html
sources/zuul.d.html
configuration.html#configuration

cibyl

1.9.3 Arguments Matrix

Table 1: The supported arguments in the different built-in sources

The last build of a job

Argument /| Description Jenk- Zuul ES JJB Zuul.d
Source ins
—jobs
Jobs names or pattern
Default: all jobs
—builds
Build numbers
Default: all builds
—last-build

—build-status

Build status (default: all)
failure, success,
abandoned, unstable

—tests

Test names or pattern
Default: all tests

—test-result

Test result (default: all)
success, failed, skipped

—test-duration

Test duration (in seconds,
default: all)
(Can be also range: “>=3")

1.10 Output

The output of a cibyl command is the result of the query made by the user. Cibyl provides a great amount of control on
the format of this output. By default, cibyl will print the output to the terminal, using colored text.

The user can choose to print to a file using the -o or --output flag. This flag takes a file path as its value and will
write there the query result.

Note: If the file specified exists, it will be overwritten.

18

Chapter 1. Index

cibyl

The user can choose the format of the output. Currently three formats are supported:

* colorized, colored text, is the default mode, well suited for printing to a terminal, but not very useful if printing
to a file

* text, plain text, ideal to use when writing to a file
* json, output in json format, useful if the output of cibyl has to be passed to another piece of software

The user can also control the level of detail of the output, using the -v or --verbose flag. This flag is cumulative, so
-vv will produce more output than -v. As an example, Job models will have a utl field, but it will only be printed in
verbose mode. Similarly, Test models have a duration field that is only shown in verbose mode.

Additionally, cibyl also has a stream of logging output. Normally, cibyl will log the duration of the query, the system
queried and where is the output written. If debug mode is used with -d or --debug, then additional information will
be printed.

1.11 Jenkins

The Jenkins source pulls data from the Jenkins API.

1.11.1 Usage

To following is a configuration sample of how to configure the Jenkins source

Minimal configuration

environments:
production:
production_jenkins:
system_type: jenkins
sources:
jenkins_api:
—jenkins" system
driver: jenkins
url: https://...
username: user
token: xyz
cert: False

List of CI/CD environments

An environment called "production"

A single system called "production_jenkins"

The type of the system (jenkins or zuul)

List of sources belong to "production_jenkins" system
The name of the source which belongs to "production_

HOH R W R W

The driver the source will be using

The URL of the system

The username to use for the authentication

The token to use for the authentication

Disable/Enable certificates to use for the authentication

H oW R W% W

plugins: # (Optional) Specify the plugins to enable when running.
—Cibyl

- openstack # OpenStack adds its own product related models and.
—arguments

1.11. Jenkins 19

cibyl

1.11.2 Plugin Support

The Jenkins source is supported by the following built-in plugins:

* OpenStack

1.12 Zuul API

The Zuul API source pulls data from the Zuul CI/CD system.

1.12.1 Usage

The following is a configuration sample of how to configure the Zuul source

environments:
production:
production_zuul :

system_type: zuul

sources:

zuul_api:
" system

driver: zuul

url: https://...

tenants:
- default
- local

oW R R W

H W R W% W

List of CI/CD environments

An environment called "production"

A single system called "production_jenkins"

The type of the system

List of sources belong to "production_jenkins" system
The name of the source which belongs to "production_zuul

The driver the source will be using

The URL of the system

List of tenants to use. This section is optional
and allows the user to restrict which zuul
tenants will be queried can be useful

1.12.2 Plugin Support

The Zuul source is supported by the following built-in plugins:

* OpenStack

1.13 Jenkins Job Builder

“Jenkins Job Builder” is the source for obtaining information from jenkins job definitions repositories. It’s supported

only with Jenkins CI/CD system.

1.13.1 Usage

To following is a configuration sample of how to configure the ‘Jenkins Job Builder’ source

environments:
production:
production_jenkins:

system_type: jenkins

sources:
—.system

List of CI/CD environments

An environment called "production"

A single system called "production_jenkins"

The type of the system (jenkins or zuul)

List of sources belong to "production_jenkins".

(continues on next page)

20

Chapter 1. Index

cibyl

(continued from previous page)

jjb: # The name of the source which belongs to
< "production_jenkins" system
driver: jenkins_job_builder # The driver the source will be using
repos: # List of repositories where the job definitions.
—are located
- url: 'https://jjb_repo_example.git'

1.13.2 Plugin Support

The ‘Jenkins Job Builder’ source is supported by the following built-in plugins:
* OpenStack

1.14 Elasticsearch

The Elasticsearch source pulls data from the different indexes of the Elasticsearch database.

1.14.1 Usage

To following is a configuration sample of how to configure the Elasticsearch source

environments: # List of CI/CD environments
production: # An environment called "production"
production_jenkins: # A single system called "production_jenkins"
system_type: jenkins # The type of the system (jenkins or zuul)
sources: # List of sources belong to "production_jenkins" system
es: # The name of the source which belongs to "production_

—jenkins" system
driver: elasticsearch # The driver the source will be using
url: https://... # The URL of the source

1.14.2 Fields

Elasticsearch should include the following fields in order to be fully operational:
* job_name
¢ build_number
* build_result

e current_build_result

1.14. Elasticsearch 21

cibyl

1.14.3 Plugin Support

The Elasticsearch source is supported by the following built-in plugins:

* OpenStack

1.15 Zuul Definitions

Zuul Definitions is the source for pulling data out of Zuul job definition repositories (usually repos with zuul.d direc-
tory).

Zuul definitions support two ways to gather data from Zuul job definition repositories:
1. By Clonning and parsing files in zuul.d dir
2. By Quering GitHub API and parsing files in zuul.d dir

Cibyl will clone repos to ~/.cibyl directory.

When remote: True option is set it will query using GitHub API instead of cloning the repositories and query them
locally.

Warning: To prevent rate limiting on GitHub you might need to add username and token options in the config.

1.15.1 Usage

To following is a configuration sample of how to configure the Zuul definitions source to work with local repos

environments: # List of CI/CD environments
production: # An environment called "production"
production_zuul: # A single system called "production_jenkins"
system_type: zuul # The type of the system
sources: # List of sources belong to "production_jenkins" system
zuul_api: # The name of the source which belongs to "production_zuul
" system
driver: zuul.d # The driver the source will be using
remote: False # Optional as this is the default
repos: # The repos to clone and query when running Cibyl query.
— commands

- url: 'http://zuul_defitions_repo.git'
- url: 'http://zuul_defitions_repol.git'

To following is a configuration sample of how to configure the Zuul definitions source to work with GitHub API

environments: # List of CI/CD environments
production: # An environment called "production"
production_zuul: # A single system called "production_jenkins"
system_type: zuul # The type of the system
sources: # List of sources belong to "production_jenkins" system
zuul_api: # The name of the source which belongs to "production_zuul
" system
driver: zuul.d # The driver the source will be using

(continues on next page)

22 Chapter 1. Index

cibyl

(continued from previous page)

remote: True # Query GitHub API instead of querying local repos
username: user # Required only when 'remote: True'

token: xyz # Required only when 'remote: True'

repos: # The repos to query using GitHub API

- url: 'http://localhost/zuul_defitions_repo.git'
- url: 'http://localhost/zuul_defitions_repol.git'

1.15.2 Plugin Support

The “Zuul Definitions” source is supported by the following built-in plugins:

* OpenStack

1.16 Core Models

Core models (aka CI/CD models) are built-in CI/CD Cibyl models:

* Environment: A CI/CD environment with one or more CI/CD systems. This is mostly a logical separation, rather
than a physical one.

* System: A CI/CD system such as Jenkins, Zuul ,etc.

* Pipeline: A specific Zuul concept which used for describing a workflow
 Job: A particular task/automation in the CI/CD system

* Build: An execution instance of a job

o Test: A test execution that is part of a build

The way they are organized and associated one with each other, mainly depends on the type of the CI/CD system
being used. For a Jenkins system for example, the hierarchy includes Job and Build models, while for Zuul system, the
hierarchy includes Pipeline, Job and Build models.

Environment
— System
L— Job # Jenkins
L Build
L Test
L Pipeline # Zuul
L— Job
L— Build
L— Test

1.16. Core Models 23

cibyl

1.17 Plugin Models

Plugin models are provided by different plugins. They are not associated by default with the core models of Cibyl, but
only when the plugin is being used. In addition, the way the plugin models are associated with core models, is very
much depends on the implementation of the plugin.

An example of plugin models can be seen in openstack plugin page

1.18 OpenStack Plugin

OpenStack is an open source cloud software. The OpenStack plugin associates CI job model with OpenStack deploy-
ment model.

1.18.1 Models

* Deployment: An entire OpenStack cluster

* Node: A single node in an OpenStack deployment/cluster associated with a single deployment
» Container: A container associated with a single node

» Package: An RPM associated with either a single node or a single container

 Service: A service associated with a single deployment

Deployment
Node
L Container
L— Package
L— Package
Service

1.18.2 Usage

To use the OpenStack plugin with Cibyl, specify —plugin openstack or include it in the configuration file.

1.18.3 Spec

Note:

This feature is only fully implemented with the Jenkins automation system.
It is partially supported with Zuul (The option will work but will not provide the complete specification)

cibyl spec JOB_NAME allows you to easily get the full OpenStack specification of a single job.

The idea behind it is to allow the user to quickly get information on which OpenStack services and features are covered
by a single job so the user doesn’t have to go and deep dive into the job configuration and build artifacts to figure it out
by himself.

An example of an output from running cibyl spec JOB_NAME:

24 Chapter 1. Index

../plugins/openstack.html#models

cibyl

Openstack deployment:
Release: 17.0
Infra type: virt
Topology: compute:2,controller:3,ironic:2
Network:
IP version: 4
Network backend: geneve
ML2 driver: ovn
Security group mechanism: native ovn

DVR: True

TLS everywhere: False
Storage:

Cinder backend: lvm
Ironic:

Ironic inspector: True
Cleaning network: False

1.18. OpenStack Plugin

25

cibyl

Arguments Matrix

Table 2: The supported arguments in the different built-in sources

Argument /| Description Jenk- Zuul ES JJB Zuul.d
Source ins
—ip-version

The IP version used

by the deployment (4 or 6)
—release

OpenStack Release

(OSP and RDO supported)
—infra-type

The infrastructure on which

OS is deployed (e.g. ovb,

baremetal, virthost)
—topology

The combination of node

types deployed
—nodes

List of nodes on the topology.
—controllers

Number of controllers

(Can be also range: “>=3")
—computes

Number of computes

(Can be also range: “>=3")
—ml2-driver

Which ml2 driver does

the deployment use
—network-
backend

acken What network protocol is

used (e.g. vxlan, vlan, ...)
—cinder-backend

What cinder backend is

used (vlan, Ceph, Netapp, nfs)
—containers

List of containersrunning

26 on the hosts Chapter|1. Index

—packages

cibyl

1.19 Features

Cibyl allows users to define their own product related data in form of what is known as “features”. Features are basically
blocks of code with the purpose of querying for specific product features in one or more environments.

Out of the box Cibyl supports multiple features for existing plugins and users can easily list them with cibyl features
Allowing users to define their own sort of product arguments has multiple advantages:

» Use internal project functions and mechanisms to define complex custom queries

 Consistent approach towards querying for product data, in different environments and sources

 Sharing product related data with other users without extending endlessly the number of product arguments
supported by Cibyl

1.19.1 Usage

To list all the existing features: cibyl features
Query IPv4 feature: cibyl features ipv6
Query two features: cibyl features ipv6 ha

Query for a feature in specific set of jobs: cibyl features ha --jobs production

1.19.2 Development

Would like to add a new feature? Read the features development section.

1.20 Tests

Cibyl tests cover the following:
* unit: testing each component of the application
* coverage: verify unit testing coverage is above 90%
* e2e: testing as a user would experience it
¢ linters: code analysis
* docs: documentation testing

Each of the above can be executed with tox -e <type> or tox to run them all

1.21 Sources

To add/develop a new type of source, follow the following guidelines:
* A source should be added to cibyl/sources/<SOURCE_NAME>
* The source class you develop should inherit from the Source class (cibyl/sources/source.py)

* For a source to support an argument, it should implement the function name associated with that argument

1.19. Features 27

development/features.html

cibyl

* Each source method that implements a method of an argument, should be returning an AttributeDict value of
the top level entity associated with the CI systems (e.g. AttributeDictValue("jobs", attr_type=Job,
value=job_objects))

* A source should handle only CI/CD related data. If you would like a certain source to pull a product related
data, you should add a source class (with the same name as the CI/CD source) to corresponding plugin (cibyl/
plugin/<PLUGIN_NAME>/sources/<SOURCE_DIR/FILE>)

1.22 Features

In cibyl we define features, which are classes containing a query method that can run a custom query using python
code. A feature is defined as a class that inherits from the FeatureDefinition class, defined in cibyl/features/__init__.py.

There is a FeatureTemplate class that can be used to quickly define simple features. The query method of this class
will select the most appropiate source considering the speed_index and the method to query in the source. To define a
new feature using this template, one only needs to define a class that inherits from FeatureTemplate, set the attribute
method_to_query to the method of choice for the source and include in the args attribute the arguments that should be
passed to the source’s method to perform the query (see for example the HA, IPV4, IPV6 features as a sample).

One could define a feature without using the FeatureTemplate code at all, the only requirements would be that the class
should provide a query method that accepts a system and returns an AttributeDictValue object, and should define a name
attribute for the feature. This way of implementing a feature gives the developer total freedom, but does not provide
some functionality like selecting the best sources given the input arguments. There could be a mixed implementation,
that relies on the FeatureTemplate query method but provided a bit more flexibility. Let’s say for example that one
wanted a feature called Example that wants to check whether a system has any job called ‘example’ with at least 3
passing builds and runs a test called ‘test_example’. Such a feature could be implemented for example like:

class Example(FeatureTemplate, FeatureDefinition):
def __init__(self):
self.name = "Example"

def get_template_args(self):
"""Get the arguments necessary to obtain the information that defines
the feature."""
args = {}
args['jobs'] = Argument("jobs", arg_type=str,
description="jobs",
value=["example"])
args['builds'] = Argument("build", arg_type=str,
description="build",
value=[])
Argument ("tests", arg_type=str,
description="tests",
value=["test_example"])

args['jobs']

return args
def query(self, system, **kwargs):

def get_method_to_query(self):
return "get_builds"
self.get_method_to_query = get_method_to_query
return_builds = super().query(system, *“*self.args, **kwargs)

(continues on next page)

28 Chapter 1. Index

cibyl

(continued from previous page)

def get_method_to_query(self):
return "get_tests"
self.get_method_to_query = get_method_to_query
more code to combine the the returns and apply the desired
conditions

Features are classes that inherit from the FeatureDefinition class. The name of the module where the feature is defined
is used as a category for the features it contains. Features are loaded in the orchestrator, in the load_features method.
There, cibyl will go through the paths that are registered by the plugins and the default location to look for features. If
features are found and requested by the user, the the run_features method is executed. If not, a normal query is executed.

As mentioned before, the query method should return an AttributeDictValue with the appropiate CI model according
to the system and source used. These models are added to the system in the run_features method. If more than one
feature is run, the output is combined to filter the returned models to add only those that satisfy all features. In addition,
for each feature that runs, a Feature model is added to the system. This model (which is a CI model, akin to a System
or Job) has only two attributes, the feature name and a boolean marking whether the feature is present in the system or
not.

After all features run, the publisher is used to print all the output. The same publisher is used for both normal queries
and feature queries. The printers for all systems will print the Feature models added to each system, and after that
it will continue printing other information found in the system if the user ran cibyl with other arguments like —jobs.
In order to handle the different cases, there are two kind of queries added to the QueryType class: FEATURES and
FEATURES_JOBS. The first will signal the case when the user has called the features subcommand, while the second
will mark the case where the user has called the features subcommand with the --jobs argument.

1.23 Output

To see an overview of cibyl output from a user’s perspective see the output page. From a developer’s perspective there
are three objects that are involved in printing the output, which are summarized in the diagram below.

1.23. Output 29

../output.html

cibyl

Orchestrator

has

PublisherFactory

creates

h J

F’ublisheri creatos JL Printer

L

PrintPublisher] |JSONPublisher

First, the Orchestrator processes the query and creates a Publisher to handle the output creation. There are two kinds
of publishers: the PrintPublisher, which prints human-readeable text and the JSONPublisher that prints JSON output.

The main difference is that the PrintPublisher prints the output for each system after each environment is queried, while
the JSONPublisher prints the output after all environment are queried. To produce valid json, all the output needs to
be aggregated into a single object, but when printing human-readeable text, producing output after each environment
is queried gives faster feedback to the user.

To produce the output, the Publisher creates a Printer object. Cibyl has a Printer abstract class that is specialized. The
used printer is typically called CI*Printer. The CI prefix is used because the class implements the interface defined by
the CIPrinter class. The interface mandates the implementation of a print_environment method. This method takes
an environment object and produces a string representation of its contents.

There are several Printer classes in cibyl, specialized depending on the output format and the contents. For example,
for printing colored output, the hierarchy shown in the diagram below is established.

30 Chapter 1. Index

cibyl

@ Printer

‘@ Ci oforedPrmfer‘

|©CICDIDredPrinter|

L

(T) CISystmPrmter‘

Fd LY
|
; I n,

@ColoredBaseSystemPrmter \

/\

‘ © CDIDredebssystemPrlnter @ ColnredzquSystemPrlnter

The class CIColoredPrinter is the Printer that is used for colored text and it will produce a string representation for all
core models. While producing the output, the printer creates a CISystemPrinter object, which is specialized depending
on which kind of system (zuul or jenkins) is being processed. The system printer is the object that will go through the
whole model hierarchy, starting at the system level, and complete the output string.

As an aside, the ColoredPrinter class takes as argument a Palette object. Using a DefaultPalette will produce colored
output, while using a ClearText palette will produce plain text (which is the result of passing the flag -f text to cibyl).

For serialized text (json being the main example), there is another set of classes that provide the funcionality, as shown
in the diagram below:

1.23. Output 31

cibyl

®Prmter|

1 —)-{@ SerializationPrwider}-ﬂ—‘@}son"}-ﬂ—{@STDJSON |

= D‘@ CIPrinter

5,
|®Serializedsasesystem?rmter e

? ,,,,,,,,,,,,,,,,,,,, Z? : ? i

I i N 7
‘@JSONEaSESystEmPrinter et i ‘@jSONjobSSystemPnnter :

7
‘@jSONZquSystemPrinter e

In this case, we have a generic CISerializedPrinter that can be specialized depending on the output format. Currently
only a JSON implementation is available, but through the use of a different SerializationProvider, a YAML or XML im-
plementation could be easily created. For json output, the printer would be the CI/JSONPrinter, which would again have
some type of CISystemPrinter. In this case it would be either a JSONBaseSystemPrinter, a JSONJobsSystemPrinter or
a JSONZuulSystemPrinter. As can be seen in the diagram, these three classes are extensions of the SerializedBaseSys-
temPrinter, SerializedJobsSystemPrinter and SerializedZuulSystemPrinter, respectively.

The printers explained above deal with the core models. If the query involved any funcionality or models provided by
a plugin, then the plugin own printer must be also called. Plugins must create their own printers by inheriting from the
PluginPrinterTemplate abstract class. We will ilustrate this relationship using the openstack plugin as an example:

| @OSPrin ter‘ ‘ @ PluginPrinterTemplate ‘ ‘ @Prﬁn ter‘

‘@GSSeriaﬁzedPrinter‘ ‘@Prlnterﬁnuter ©CnlnredPrlnter‘
‘@OS]SONPrinter‘ ‘@DSCnlnredPnnter

The openstack plugin introduces a PrinterRouter class which implements the PluginPrinterTemplate requirements (an
as_text and an as_json method). Then, the plugin introduces two printers: OSJSONPrinter and OSColoredPrinter
for json and human-readeable output. When producing the output, the system printers explained above will call the
as_text or as_json method from the appropiate openstack printer and will get the correct string representation for the
plugin-specific models found in the query.

32 Chapter 1. Index

cibyl

1.24 Contribute

Please submit a pull requests to the cibyl project on GitHub.

1.24.1 Style

Cibyl CI enforces code linting according to the Google Python Style Guide

1.24. Contribute

33

https://github.com/rhos-infra/cibyl

cibyl

34 Chapter 1. Index

CHAPTER
TWO

INDICES AND TABLES

* genindex
* modindex

¢ search

35

	Index
	Bootstrap
	Installation
	Configuration
	Usage - CLI

	Usage
	CLI
	Basic
	Jobs

	Python

	Installation
	Configuration

	Configuration
	Format
	Configuration Path
	Sources
	Validate Configuration
	Full Configuration
	Disabling environments, systems and sources

	CLI
	CLI organization
	General parameters
	CI/CD queries
	Environment selection
	Job queries
	Build queries
	Test queries
	Zuul specific queries
	Jenkins specific queries

	Product queries
	Openstack queries
	Combination of openstack and CI/CD queries

	API
	Parser
	Plugins
	Plugin Class

	Sources
	Configuring Sources
	Source Interface
	Arguments Matrix

	Output
	Jenkins
	Usage
	Plugin Support

	Zuul API
	Usage
	Plugin Support

	Jenkins Job Builder
	Usage
	Plugin Support

	Elasticsearch
	Usage
	Fields
	Plugin Support

	Zuul Definitions
	Usage
	Plugin Support

	Core Models
	Plugin Models
	OpenStack Plugin
	Models
	Usage
	Spec
	Arguments Matrix

	Features
	Usage
	Development

	Tests
	Sources
	Features
	Output
	Contribute
	Style

	Indices and tables

